Rapid Delivery **GPS-Based** Orbits for Altimetry Support

B. Haines, R. Muellerschoen, S. Lichten, Y. Vigue and T. Munson

Jet Propulsion Laboratory
California Institute of Technology

TOPEX/Poseidon (August 1992 —)

- NASA/CNES mission directed at observing large-scale circulation.
- 1300 km orbit with 10-day repeating ground track
- Extended observational phase since Fall 1995
- Tracked by Doris, SLR and GPS
- Radial orbit accuracy: 2-2.5 cm RMS
- •Sea surface height accuracy: ~4 cm RMS

Anti-Spoofing Issues for T/P GPS POD

- AS activated routinely since January, 1994.
- **□** GPSDR reverts to single-frequency operation
 - •lonosphere emerges as leading source of error, even at 1300 km.
 - Traditional "reduced-dynamics" not advisable.

With AS on, GPSDR is still a powerful POD system:

- Orbits with 3-6 cm radial RMS accuracy routinely produced.
- Preliminary results from experimental strategies suggest <3 cm accuracy.
- New GPS techniques lend themselves to significant automation and very rapid turnaround.

Quick-Look Analysis: GPS-Based Orbits for T/P

- T/P "Next-day quick-look" orbits (since 8/95)
 - For U.S. Navy Altimetry Data Fusion Center
 - Based on predicted (1-day) GPS orbits (1 m 3D accuracy)
 - Need data from 12 ground stations (ζ = 4000 km) for GPS clocks
 - Radial RMS accuracy of 3-9 cm bv ~1000 UTC for previous-day orbits
 - Radial RMS accuracy of 15-50 cm in real time based on predict
- •T/P Rapid precision science orbits (since 6/96)
 - Used in NOAA quick-look analyses
 - Need data from 18 ground stations (ζ = 3400 km) for GPS orb./clocks
 - Based on "quick-look" GPS orbits (25 cm 3D accuracy)
 - •Radial RMS accuracy of 3-6 cm by -1400 UTC for previous-day orbits

Radial Accuracy History for T/P GPS Rapid Precise Orbits

Operational Applications of Near Real Time Satellite Altimetry

- Examples of Activities presently relying on the GPS-based rapid service T/P orbits:
 - Produce near real time estimates of global sea heights
 - NOAA/Natl Ocean Service (http://ibis.grdl.noaa.gov/SAT/near_rt/topex_2day.html)
 - Univ. Of Colorado (http://www-ccar. colorado.edu/research/alt/html/alt_nrt.html)
 - Rapidly assimilate data into global ocean models
 - Improve global circulation models at U.S. Navy Altimeter Data Fusion Center
 - Improve ENSO forecasts at NOAA/Natl. Center for Environmental Prediction (http://nic.fb4.noaa.gov:80/products/analysis_monitoring/enso_advisory/)
 - Monitor regional ocean dynamics in near real time
 - Track eddies in Gulf of Mexico to support offshore oil industry, ocean surveys (http://www-ccar.colorado.edu/research/gom/html/gom_nrt.html)

T/P Repeat Cycle 150 Orbit Differences

GPS AS Orbits vs NASA POE

Acknowledgement

• The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.